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Measure theory

Let µ̂ : R ! R be monotonic non-decreasing on R; then µ̂ generates
a non-negative Baire measure µ on the σ-algebra B of Borel sets of
R. In turn µ de�nes the Lebesgue-Stieltjes, Hilbert function space
L2(R; µ) with inner-product

(f , g)µ :=
Z

R
f g dµ =

Z
R
f (x)g(x) dµ(x)

for all equivalence classes generated by f , g 2 L2(R; µ).

If µ̂ 2 ACloc(R), with respect to Lebesgue measure, then the
derivative µ̂0 exists almost everywhere and is non-negative on R. In
this case if f , g 2 L2(R; µ) then f , g belong to the weighted
Lebesgue Hilbert function space L2(R : µ̂0) and

(f , g)µ � (f , g)µ̂0 =
Z

R
f (x)g(x)µ̂0(x) dx .

Throughout suppose that µ̂ is not constant on R.
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Orthogonal polynomials

.

For some interval I � R let the support of the measure µ be I.

Given the Hilbert function space L2(I; µ) let µ̂ be chosen so that the
moment conditionZ

I
jx jn dµ(x) < +∞ for all n 2 N0

is satis�ed.

Given the functions x 7�! xn 2 L2(I; µ) for all n 2 N0 suppose that
for all n 2 N0 the result

Z
I

����� n∑r=0 αr x r
�����
2

dµ(x) = 0,

with fαr 2 C : r = 0, 1, . . . , ng, implies that αr = 0 for
r = 0, 1, . . . , n.
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Orthogonal polynomials
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An application of the Gram-Schmidt orthogonalisation process gives a
sequence fϕn : n 2 N0g of real-valued, linearly independent
polynomials each in the Hilbert space L2(I; µ) and respectively of
degree exactly n, with the orthogonal propertyZ

I
ϕm(x)ϕn(x) dµ(x) = 0,

for all m, n 2 N0 with m 6= n. Also

kn :=
Z

I
jϕn(x)j

2 dµ(x) > 0 for all n 2 N0.

The set fϕn : n 2 N0g may or may not be complete in the space
L2(I; µ).
The set fϕn : n 2 N0g is complete in the space L2(I; µ) if the
support of the measure µ is a bounded set on the real line R; if the
support of µ is not bounded then the set may or may not be complete.
For all n 2 N0, the n zeros of ϕn are all real, simple and contained in
I; these zeros interlace the n+ 1 zeros of ϕn+1.
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Jacobi polynomials

Let the independent parameters α, β 2 R and satisfy the condition
α, β > �1. (Legendre polynomials is a special case with α = β = 0.)
De�ne µ̂ : R ! R by

µ̂(x) :=

8><>:
�
R 0
�1(1� t)α(1+ t)β dt for all x 2 (�∞,�1)R x

0 (1� t)α(1+ t)β dt for all x 2 [�1,+1]R 1
0 (1� t)α(1+ t)β dt for all x 2 (+1,+∞).

Then µ̂ is monotonic non-decreasing on R and µ̂ 2 ACloc(R). The
measure µ generated by µ̂ has compact support [�1,+1] and the
weighted Lebesgue Hilbert function space L2(R : µ̂0) has the inner-product

(f , g)µ =
Z +1

�1
f (x)g(x)(1� x)α(1+ x)β dx .

The associated Jacobi orthogonal polynomials are complete in the
weighted space L2((�1,+1); (1� x)α(1+ x)β), and are denoted byn

P (α,β)n (x) : for all x 2 [�1,+1] and all n 2 N0

o
.
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Laguerre polynomials

Let the independent parameter α 2 R and satisfy the condition α > �1.
De�ne µ̂ : R ! R by

µ̂(x) :=
�
0 for all x 2 (�∞, 0)R x
0 t

α exp(�t) dt for all x 2 [0,+∞)

Then µ̂ is monotonic non-decreasing on R and µ̂ 2 ACloc(R). The
measure µ generated by µ̂ has support [0,+∞) and the weighted
Lebesgue Hilbert function space L2(R : µ̂0) has the inner-product

(f , g)µ =
Z +∞

0
f (x)g(x)xα exp(�x) dx .

The associated Laguerre orthogonal polynomials are complete in the
weighted space L2((0,+∞); xα exp(�x)), and are denoted by

fLα
n(x) : for all x 2 [0,+∞) and all n 2 N0g .
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Hermite polynomials

De�ne µ̂ : R ! R by

µ̂(x) :=
Z x

0
exp(�t2) dt for all x 2 (�∞,+∞)

Then µ̂ is monotonic non-decreasing on R and µ̂ 2 ACloc(R). The
measure µ generated by µ̂ has support (�∞,+∞) and the weighted
Lebesgue Hilbert function space L2(R : µ̂0) has the inner-product

(f , g)µ =
Z +∞

�∞
f (x)g(x) exp(�x2) dx .

The associated Hermite orthogonal polynomials are complete in the
weighted space L2((�∞,+∞); exp(�x2)), and are denoted by

fHn(x) : for all x 2 (�∞,+∞) and all n 2 N0g .
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Sturm-Liouville theory

Given the open interval (a, b) � R let the three coe¢ cients
p, q,w : (a, b)! R and satisfy the conditions

p�1, q,w 2 L1loc(a, b) and p,w > 0 almost everywhere on (a, b).

Then the associated Sturm-Liouville di¤erential equation is

�(p(x)y 0(x))0 + q(x)y(x) = λw(x)y(x) for all x 2 (a, b),

where λ 2 C is the complex-valued spectral parameter.
The spectral properties of this equation are studied in the weighted Hilbert
function space L2((a, b);w).
The GKN theory of symmetric boundary conditions applied to the
endpoints a and b, yields a continuum of self-adjoint di¤erential operators,
say fTg, in the space L2((a, b);w), all generated by the expression
w�1(�(pf 0)0 + qf ). Here the elements f in the domain D(T ) of a
particular operator T , have to satisfy certain di¤erentiability properties
and the chosen symmetric boundary conditions.
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Di¤erential equations

Sturm-Liouville di¤erential equations for Jacobi, Laguerre, Hermite cases.

Jacobi
In this case the di¤erential equation is, for all x 2 (�1,+1),

�((1� x)α+1(1+ x)β+1y 0(x))0 = λ(1� x)α(1+ x)βy(x).

Eigenvalues λn = n(n+ α+ β+ 1) for all n 2 N0. Eigensolutions

P (α,β)n (x).

Laguerre
In this case the di¤erential equation is, for all x 2 (0,+∞)

�(xα+1 exp(�x)y 0(x))0 = λxα exp(�x)y(x).
Eigenvalues λn = n for all n 2 N0. Eigensolutions Lα

n(x).
Hermite
In this case the di¤erential equation is, for all x 2 (�∞,+∞),

�(exp(�x2)y 0(x))0 = λ exp(�x2)y(x).
Eigenvalues λn = 2n for all n 2 N0. Eigensolutions Hn(x).
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Bochner

The orthogonal polynomials named as Jacobi, Laguerre and Hermite can
be considered as arising from:

1 Non-negative Baire measure spaces and the associated
Lebesgue-Stieltjes spaces.

2 Sturm-Liouville di¤erential equations with positive coe¢ cient p and
positive weight w .

3 Eigenvectors of right-de�nitive, self-adjoint Sturm-Liouville di¤erential
operators.

4 In his paper of 1929 Bochner proved that the only sets of orthogonal
polynomials, de�ned on intervals of the real line R, that are generated
by Sturm-Liouville di¤erential equations are the Jacobi, Laguerre and
Hermite polynomials. For this reason and for historical connections,
these Jacobi, Laguerre and Hermite polynomials are named the
classical orthogonal polynomials.
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Krall

In two papers, written in 1938 and 1940, H.L. Krall solved the problem of
�nding all fourth-order Lagrange symmetric (formally self-adjoint)
fourth-order di¤erential equations, generating sets of orthogonal
polynomials on intervals of the real line R. He found six sets of such
polynomials:

Three sets are from the formal squares of the three classical
di¤erential expressions and reproduce the Jacobi, Laguerre and
Hermite orthogonal polynomials on their respective intervals of R.

Three new sets of orthogonal polynomials generated by fourth-order
di¤erential expressions, which cannot be factored into symmetric
expressions: these fourth-order polynomials are now named as:

Legendre-type, Jacobi-type, Laguerre-type.
(Note: Legendre-type is not a special case of Jacobi-type.)
There is no Hermite-type di¤erential equation.
Krall proved the equivalent of the Bochner result for the fourth-order
case.
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expressions: these fourth-order polynomials are now named as:

Legendre-type, Jacobi-type, Laguerre-type.
(Note: Legendre-type is not a special case of Jacobi-type.)
There is no Hermite-type di¤erential equation.
Krall proved the equivalent of the Bochner result for the fourth-order
case.
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Legendre-type

Di¤erential equation Let A 2 (0,+∞) be given; then the Lagrange
symmetric equation is�

(1� x2)2y 00(x)
�00 � ��8+ 4A(1� x2)� y 0(x)�0 = λy(x) (1)

for all x 2 (�1,+1), with λ 2 C as the spectral parameter.

Measure Let µ̂ : R ! R be de�ned by

µ̂ : = � 1
2 (A+ 1) for all x 2 (�∞,�1)

= 1
2Ax for all x 2 [�1,+1]

= + 1
2 (A+ 1) for all x 2 (+1,+∞).

Let µ be the non-negative Baire measure generated by µ̂; then µ has
compact support [�1,+1] and the associated Lebesgue-Stieltjes
space L2(R; µ) � L2([�1,+1]; µ) has the inner-productZ
[�1,+1]

f g dµ =
f (�1)g(�1)

2
+
A
2

Z +1

�1
f (x)g(x) dx+

f (+1)g(+1)
2

.

Note if f 2 L2(R; µ) then the values f (�1) are prescribed in C.
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Self-adjoint operators The Lagrange symmetric di¤erential
expression on the left of (1) generates a continuum of GKN
self-adjoint operators in the Lebesgue space L2(�1,+1); the
expression generates a unique self-adjoint operator TALe in the
Lebesgue-Stieltjes space L2([�1,+1]; µ). The operator TALe
determines the spectral properties of the Legendre-type orthogonal
polynomials.

Eigenvalues The spectrum of TALe is simple and discrete with
eigenvalues given by

λAn = n(n+ 1)(n
2 + n+ 4A� 2) for all n 2 N0.

Eigenvectors The eigenvectors of TALe are the Legendre-type
orthogonal polynomials fPAn (x) :for all x 2 [�1,+1] and n 2 N0g
with the explicit representation

PAn (x) =
[n/2]

∑
k=0

(�1)k (2n� 2k)!
�
A+ 1

2n(n� 1) + 2k
�
xn�2k

2nk !(n� k)!(n� 2k)! .

Completeness The set of eigenvectors fPAn (�) : n 2 N0g is complete
in the space L2([�1,+1]; µ).
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Jacobi-type

Di¤erential equation Let α 2 (�1,+∞) and A 2 (0,+∞) be given;
then the Lagrange symmetric di¤erential equation is�

(1� x)α+2(1+ x)2y 00(x)
�00�

(x2 exp(�x)y 00(x))00 � (((2A+ 2)x + 2) exp(�x)y 0(x))0 =
= λ(1� x)αy(x) for all x 2 (�1,+1), (2)

with λ 2 C as the spectral parameter.

Measure Let µ̂ : R ! R be de�ned by

µ̂ : = �[(2α+1 � 1)A+ α+ 1] f2(α+ 1)g�1 for all x 2 (�∞,�1)
=
A
2

R x
0 (1� t)αdt for all [�1,+1]

= A f2(α+ 1)g�1 for all (+1,+∞)

Let µ be the non-negative Baire measure generated by µ̂; then µ has
compact support [�1,+1] and the associated Lebesgue-Stieltjes
space L2(R; µ) � L2([�1,+1]; µ) has the inner-product

W.N. Everitt () The (Bessel, Jacobi, Laguerre, Legendre)-type linear fourth-order di¤erential equations: remarks on history and special functions15 January 2008 15 / 28



Jacobi-type

Di¤erential equation Let α 2 (�1,+∞) and A 2 (0,+∞) be given;
then the Lagrange symmetric di¤erential equation is�

(1� x)α+2(1+ x)2y 00(x)
�00�

(x2 exp(�x)y 00(x))00 � (((2A+ 2)x + 2) exp(�x)y 0(x))0 =
= λ(1� x)αy(x) for all x 2 (�1,+1), (2)

with λ 2 C as the spectral parameter.
Measure Let µ̂ : R ! R be de�ned by

µ̂ : = �[(2α+1 � 1)A+ α+ 1] f2(α+ 1)g�1 for all x 2 (�∞,�1)
=
A
2

R x
0 (1� t)αdt for all [�1,+1]

= A f2(α+ 1)g�1 for all (+1,+∞)

Let µ be the non-negative Baire measure generated by µ̂; then µ has
compact support [�1,+1] and the associated Lebesgue-Stieltjes
space L2(R; µ) � L2([�1,+1]; µ) has the inner-product
W.N. Everitt () The (Bessel, Jacobi, Laguerre, Legendre)-type linear fourth-order di¤erential equations: remarks on history and special functions15 January 2008 15 / 28



Z
[�1,+1]

f g dµ =
f (�1)g(�1)

2
+
A
2

Z +1

�1
f (x)g(x)(1� x)α dx .

Note if f 2 L2(R; µ) then the values f (�1) are prescribed in C.

Self-adjoint operators The Lagrange symmetric di¤erential
expression on the left of (2) generates a continuum of GKN
self-adjoint operators in the weighted Lebesgue space
L2((�1,+1); (1� x)α); the expression generates a unique self-adjoint
operator T α,A

J in the Lebesgue-Stieltjes space L2([�1,+1]; µ). The
operator T α,A

J determines the spectral properties of the Jacobi-type
orthogonal polynomials.
Eigenvalues The spectrum of T α,A

J is simple and discrete with
eigenvalues given by

λα,A
n = n(n+ α+ 1)(n2 + (α+ 1)n+ 4A2α + α) for all n 2 N0.

Eigenvectors The eigenvectors of T α,A
J are the Jacobi-type

orthogonal polynomials fPα,A
n (x) :for all x 2 [�1,+1] and n 2 N0g

with the explicit representation
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Eigenvectors

Pα,A
n (x) =

n

∑
k

(�1)n�k (nk)Γ(α+ n+ k + 1)
(k + 1)!

�

�
�
k(n+ α)(n+ 1) + (k + 1)2α+1A

�
Γ(α+ n+ 1)

�
x + 1
2

�k
.

Completeness The set of eigenvectors fPα,A
n (�) : n 2 N0g is

complete in the space L2([�1,+1]; µ).
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Remark

The completeness of the two sets of Legendre-type and Jacobi-type
orthogonal polynomials in their respective Lebesgue-Stieltjes spaces
L2([�1,+1]; µ) may be viewed as due to:

1 The Baire measures µ in the respective cases have compact support
[�1,+1] on the real line R.

2 The self-adjoint di¤erential operators TALe and T
α,A
J have discrete

simple spectra in their respective spaces L2([�1,+1]; µ) and so, from
the spectral theorem, the two sets of eigenvectors are complete in
these spaces.
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Laguerre-type

Di¤erential equation Let A 2 (0,+∞) be given; then the Lagrange
symmetric di¤erential equation is

(x2 exp(�x)y 00(x))00 � (((2A+ 2)x + 2) exp(�x)y 0(x))0

= λ exp(�x)y(x) for all x 2 (0,+∞) (3)

with λ 2 C as the spectral parameter.

Measure Let µ̂ : R ! R be de�ned by

µ̂ : = �1/A for all x 2 (�∞, 0)
= 1� exp(�x) for all x 2 [0,+∞).

Let µ be the non-negative Baire measure generated by µ̂; then µ has
support [0,+∞) and the associated Lebesgue-Stieltjes space
L2(R; µ) � L2([0,+∞); µ) has the inner-productZ

[0,+∞)
f g dµ =

f (0)g(0)
A

+
Z ∞

0
f (x)g(x) exp(�x) dx .

Note if f 2 L2(R; µ) then the values f (0) are prescribed in C.
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Self-adjoint operators The Lagrange symmetric di¤erential
expression on the left of (3) generates a continuum of GKN
self-adjoint operators in the weighted Lebesgue space
L2((0,+∞); exp(�x)); the expression generates a unique self-adjoint
operator TALa in the Lebesgue-Stieltjes space L

2([0,+∞); µ). The
operator TALa determines the spectral properties of the Laguerre-type
orthogonal polynomials.

Eigenvalues The spectrum of TALa is simple and discrete with
eigenvalues given by

λAn = n(n+ 2A+ 1) for all n 2 N0.

Eigenvectors The eigenvectors of TALa are the Laguerre-type
orthogonal polynomials fLAn (x) :for all x 2 [�1,+1] and n 2 N0g
with the explicit representation

LAn (x) =
n

∑
k=0

(�1)k
�
n
k

�
(k(A+ n+ 1) + A)

(k + 1)!
xk .

Completeness The set of eigenvectors fLAn (�) : n 2 N0g is complete
in the space L2([0,+∞); µ).
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Bessel functions

Di¤erential equation One form of the classical Bessel di¤erential
equation of second-order, when the Bessel parameter ν = 0, is the
Sturm-Liouville di¤erential equation

�(xy 0(x))0 = λxy(x) for all x 2 (0,+∞), (4)

with λ 2 C as the spectral parameter.

Solutions Solutions of this equation (4) are J0
�
x
p

λ
�
and

Y0
�
x
p

λ
�
, choosing a branch of the analytic function

p
�.

Spectral theory The spectral theory for this di¤erential equation is
considered in the weighted Hilbert function space L2((0,+∞); x). All
self-adjoint di¤erential operators generated by this di¤erential
equation in L2((0,+∞); x) have the positive half-line [0,+∞) � C

as continuous spectra.
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Solutions Solutions of this equation (4) are J0
�
x
p

λ
�
and

Y0
�
x
p

λ
�
, choosing a branch of the analytic function

p
�.

Spectral theory The spectral theory for this di¤erential equation is
considered in the weighted Hilbert function space L2((0,+∞); x). All
self-adjoint di¤erential operators generated by this di¤erential
equation in L2((0,+∞); x) have the positive half-line [0,+∞) � C

as continuous spectra.
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Bessel-type

Di¤erential equation Let M 2 (0,+∞) be given; then the Lagrange
symmetric, Bessel-type di¤erential equation of the fourth-order, is

(xy 00(x))00�
�
(9x�1 + 8M�1x)y 0(x)

�0
= Λxy(x) for all x 2 (0,+∞),

with Λ 2 C as the spectral parameter.

Solutions Solutions of this equation can be formed from linear
combinations of the classical Bessel and modi�ed Bessel functions:

(i) J0(xλ) and J1(xλ) (ii) Y0(xλ) and Y1(xλ)

(iii) K0
�
x
p

λ2 + 8M�1
�
and K1

�
x
p

λ2 + 8M�1
�

(iv) I0
�
x
p

λ2 + 8M�1
�
and I1

�
x
p

λ2 + 8M�1
�
,

where Λ � Λ(λ,M) = λ2(λ2 + 8M�1) for all λ 2 C and all M > 0.

Examples Let c =
p

λ2 + 8M�1 and d = 1+M(λ/2)2 and de�ne

J0,Mλ (x) := [1+M(λ/2)2]J0(λx)� 2M(λ/2)2(λx)�1J1(λx)

K 0,Mλ (x) := dK0(cx) + 1
2cMx

�1K1(cx).
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Spectral theory The spectral theory for this di¤erential equation can
be considered in the space L2((0,+∞); x). All self-adjoint di¤erential
operators generated by this di¤erential equation in L2((0,+∞); x)
have the positive half-line [0,+∞) � C as continuous spectra.

Measure The spectral theory for this di¤erential equation may also
be considered (in comparison with the orthogonal polynomial type
di¤erential equations) in a Lebesgue-Stieltjes Hilbert function space.
Let the parameter k 2 (0,+∞) and de�ne µ̂k : R ! R by

µ̂k (x) : = �k for all x 2 (�∞, 0)
= x2/2 for all x 2 [0,+∞).

Let µ be the non-negative Baire measure generated by µ̂; the
associated space L2([0,+∞); µ) has the inner-productZ

[0,+∞)
f g dµ = kf (0)g(0) +

Z ∞

0
f (x)g(x)x dx .

Spectral theory For each k 2 (0,∞) the Bessel-type di¤erential
expression generates a unique self-adjoint operator T kB in the space
L2([0,+∞); µ); the spectrum of T kB is continuous on [0,+∞) � C.

W.N. Everitt () The (Bessel, Jacobi, Laguerre, Legendre)-type linear fourth-order di¤erential equations: remarks on history and special functions15 January 2008 23 / 28



Spectral theory The spectral theory for this di¤erential equation can
be considered in the space L2((0,+∞); x). All self-adjoint di¤erential
operators generated by this di¤erential equation in L2((0,+∞); x)
have the positive half-line [0,+∞) � C as continuous spectra.
Measure The spectral theory for this di¤erential equation may also
be considered (in comparison with the orthogonal polynomial type
di¤erential equations) in a Lebesgue-Stieltjes Hilbert function space.
Let the parameter k 2 (0,+∞) and de�ne µ̂k : R ! R by

µ̂k (x) : = �k for all x 2 (�∞, 0)
= x2/2 for all x 2 [0,+∞).

Let µ be the non-negative Baire measure generated by µ̂; the
associated space L2([0,+∞); µ) has the inner-productZ

[0,+∞)
f g dµ = kf (0)g(0) +

Z ∞

0
f (x)g(x)x dx .

Spectral theory For each k 2 (0,∞) the Bessel-type di¤erential
expression generates a unique self-adjoint operator T kB in the space
L2([0,+∞); µ); the spectrum of T kB is continuous on [0,+∞) � C.

W.N. Everitt () The (Bessel, Jacobi, Laguerre, Legendre)-type linear fourth-order di¤erential equations: remarks on history and special functions15 January 2008 23 / 28



Spectral theory The spectral theory for this di¤erential equation can
be considered in the space L2((0,+∞); x). All self-adjoint di¤erential
operators generated by this di¤erential equation in L2((0,+∞); x)
have the positive half-line [0,+∞) � C as continuous spectra.
Measure The spectral theory for this di¤erential equation may also
be considered (in comparison with the orthogonal polynomial type
di¤erential equations) in a Lebesgue-Stieltjes Hilbert function space.
Let the parameter k 2 (0,+∞) and de�ne µ̂k : R ! R by

µ̂k (x) : = �k for all x 2 (�∞, 0)
= x2/2 for all x 2 [0,+∞).

Let µ be the non-negative Baire measure generated by µ̂; the
associated space L2([0,+∞); µ) has the inner-productZ

[0,+∞)
f g dµ = kf (0)g(0) +

Z ∞

0
f (x)g(x)x dx .

Spectral theory For each k 2 (0,∞) the Bessel-type di¤erential
expression generates a unique self-adjoint operator T kB in the space
L2([0,+∞); µ); the spectrum of T kB is continuous on [0,+∞) � C.

W.N. Everitt () The (Bessel, Jacobi, Laguerre, Legendre)-type linear fourth-order di¤erential equations: remarks on history and special functions15 January 2008 23 / 28



Connections

The Bessel-type functions were discovered by Everitt and Markett in 1992
at the SERC meeting held at the Department of Mathematics, University
of Cardi¤.
We have the following special function connections, which consolidate the
position of the Bessel and Bessel-type functions, with respect to the
orthogonal and orthogonal-type polynomials.

Jacobi polynomials
(1� x)α(1+ x)β �!

Jacobi-type polynomials
(1� x)α

+ 1
2 δ(x + 1)

# #
Laguerre polynomials

xα exp(�x) �! Laguerre-type polynomials
xα exp(�x) + 1

A δ(x)
# #

Bessel functions
x2α+1 �! Bessel-type functions

x2α+1 + kδ(x)

W.N. Everitt () The (Bessel, Jacobi, Laguerre, Legendre)-type linear fourth-order di¤erential equations: remarks on history and special functions15 January 2008 24 / 28



Partial di¤erential equations

On a visit to the University of Birmingham in the summer of 2003 Michael
Plum discovered a linear ordinary fourth-order partial di¤erential equation
which is connected with the fourth-order Bessel equation.
If the Laplacian r2 partial di¤erential expression in R2 is written in polar
co-ordinates

r2 =
∂2

∂r2
+
1
r

∂

∂r
+
1
r2

∂2

∂θ2

then the Plum equation has the form, with u = u(r , θ),

r4u � γr2u � 4γ

r2
u = Λu.

Here γ > 0 is determined by γ = 8M�1 where M > 0 is the parameter in
the fourth-order Bessel equation , and Λ 2 C is a spectral parameter.
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Solutions of this partial di¤erential equation can be obtained by a limited
form of the method of separation of variables to give

u(r , θ) = v(r)w(θ) for all r 2 (0,∞) and θ 2 [0, 2π],

where:

The factor v(�) is a solution of the fourth-order Bessel-type
di¤erential equation

(ry 00(r))00 �
�
(9r�1 + 8M�1r)y 0(r)

�0
= Λry(r) for all r 2 (0,+∞).

The factor w(�) is a solution of the (Sturm-Liouville) di¤erential
equation

�w 00(θ) = 4w(θ).
Note that the factor 4 in this second ordinary di¤erential is critical to
obtaining the separated property of the partial di¤erential equation.
Thus, for some A,B 2 R we have w(θ) = A cos(2θ) + B sin(2θ).
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Boundary value problems

Some boundary value problems for the Plum partial di¤erential equation
may be of interest in applied mathematics.
Possible problems could be concerned with considering solutions of the
partial di¤erential equation, satisfying boundary conditions on the
following domains of the plane:

1 Bounded domain: 0 < r � R, and 0 � θ � π or 0 � θ � 2π

2 Annulus domain: 0 < a � r � b, and 0 � θ � 2π

3 Quarter annulus domain: 0 < a � r � b < +∞ and 0 � θ � π/2
4 Plane domain: 0 < r < +∞, and 0 � θ � 2π.
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The biharmonic partial di¤erential equation

If in the Bessel-type equation we take the parameter γ = 0 then we obtain
the fourth-order biharmonic equation in the plane, again with Λ as a
spectral parameter

r4u = Λu;

this action is the equivalent to letting the parameter M ! +∞.
The Plum method can be applied to this polar form to obtain separated
solutions of the form

u(r , θ) = v(r)w(θ) for all r 2 (0,∞) and θ 2 [0.2π]

where, as before, the factor w(�) satis�es the equation �w 00 = 4w , but
now the factor v(�) has to be a solution of the fourth-order ordinary
equation, in Lagrange symmetric form,

(rv 00(r))00 � (9r�1v 0(r))0 = Λrv(r) for all r 2 (0,∞).

This last fourth-order ordinary di¤erential equation can also to be studied
in the Hilbert function space L2((0,∞); r).
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